Cevapla 
 
Değerlendir:
  • 0 Oy - 0 Yüzde
  • 1
  • 2
  • 3
  • 4
  • 5
Fiziğin Gelişimi-2
Mesaj: #1
4) KUANTUM>>
Kuantum, kelime olarak kesikli, parçalı anlamlarına gelir. Bu teorinin, akkor hale gelinceye kadar ısıtılan bir cismin, kazandığı enerji ile yaydığı ışığın frekans dağılımı arasındaki ilişkinin ortaya konulması probleminden doğması; ışığın yapısının, teoride vazgeçilmez öneme sahip olduğunu gösterir. Bunun için öncelikle ışık teorilerinin tarihsel gelişimine bakmakta fayda vardır.

Işık bilgisi ile ilgili köklü gelişmeler XVII. y.y’ da başlar. Işık üzerine kurulan ilk teori, I. Newton’ nun parçacık teorisidir. Newton, bu parçacıkların çok küçük olduğunu belirtirken, bunların karakteristiklerini tanımlamada başarız olmuştur. Onun, parçacığa zıt olan dalga yapısından uzak durmasının sebebi ise; dalga hareketinin temel özelliği olan kırınım olayını fark etmemiş olmasıdır.

Hollandalı bilimadamı C. Huygens ise tamamen Newton’ dan farklı düşündü. Ona göre ışık, dalgaydı. t="on" ProductID="1678’">1678’ de ortaya koyduğu teorisinde Huygens, ışığın katıda yada sıvıda, havada olduğundan daha yavaş hareket edeceğini öne sürmüştür. Newton’ un teorisine göre ise, ışık tanecikleri yoğun ortamda daha hızlı hareket etmeliydi. Fransız fizikçi J. Foucault; ışığın hızının, az yoğun ortamda daha büyük olduğunu gösterdi. Böylece dalga modelinin doğruluğu kanıtlanmış oluyordu. Dalga modeline diğer güçlü kanıt ise; birbirini kesen ışık demetlerinin, çarpışmadan yoluna devam etmesiydi. Dalga modeli için bu kanıtların bulunmasına rağmen, Newton’ un otoritesi ile parçacık teorisi XVIII. y.y ’ da da kabul gördü.

1805 yılında; İngiliz T. Young ve Fransız A. Fresnel, ışığın girişim ve kırınım yaptığını deneysel olarak gösterdiler. Bu tür bir davranışı parçacıklar yapamazdı. Bu tarihten itibaren dalga kuramının daha itibar gördüğü söylenebilir. Ancak her dalganın yayılması için bir ortam gerekirdi. Böyle bir ortamın varlığının ispat edilemeyişi, parçacık tezinin tamamen itilmesine mani oldu.

1900 yılına gelindiğinde fizik dünyasının tanımlayamadığı üç temel problem vardı:

Işığın karakteri

Atomun kararlılığı ve yapısı

Kara cisim (üzerine gelen bütün ışık dalgalarını yutarak büyük enerjilere sahip olabilen ideal cisim) ışıması

Gerçekte bu üç sorun da birbirine bağlantılı idi. Ama klasik fizikten farklı birtakım anlayışlarla açıklanabilirlerdi. Cevap ise; 1900 yılında Alman bilgin M. Planck’ tan geldi. Yüksek sıcaklıklarda ısıtılan bir metalin yaydığı ışığın spektral dağılımı, o metalin soğurduğu enerji ile bir tek durumda uyuşuyordu: Enerji, parçalı yayılmalıdır. Enerji ifadesini Planck; bir h sabitiyle ışımanın f ile gösterilen frekansının çarpımı şeklinde ifade eder. Tamsayı değerler almak üzere n tanımlanırsa, enerji ifadesi;

>>

Şeklinde yazılır.>>
n, sadece tamsayı değerler aldığından, ara değerlerde enerji olmadığı sonucuna varılır. Böylece karacisim problemine çözüm bulunur.

Planck’ ın bulgusundan 5 yıl sonra; A. Einstein, ayni yaklaşımı kullanarak ışığın metalden elektron sökme olayı olarak bilinen fotoelektrik etki problemine açıklık getirir. Einstein’ e göre; ışığın, elektrona 10(-15) s. gibi çok küçük zaman aralığında enerjisini aktarması ancak ışık parçacıklarının elektronlara çarpmasıyla mümkün olabilirdi. Böylece, ışığın hf enerjisi taşıyan fotonlardan oluştuğu anlaşıldı. Einstein, bununla da kalmayarak girişim ve kırınım olaylarının açıklanabileceği dalga teorisini de kabul etti; ışığın hem dalga ve hem de tanecik olduğunu açıkladı.

O tarihlerde bilimadamları, artık mikroskobik boyutta gerçekleşen olayların, kuantum düşüncesiyle açıklanabileceğine inandılar. Nitekim; E. Rutherford’ un, atomun yapısının Güneş sistemine benzer olduğuna ilişkin mekanik yorumunun yanlışlığı t="on" ProductID="1913’">1913’ te kuantum teorisiyle doğrulandı. Rutherford’ un teorisine göre elektronlar, protonların çevresinde dairesel yörüngelerde dönmeliydi. Ancak dairesel hareket yapan bir yük ivmeleneceğinden, elektromanyetik dalgalar yayarak protonlar tarafından yutulacaktı. Bu durumda, atomun var olmaması gerekirdi. Danimarkalı fizikçi N. Bohr; problemi, elektronun açısal momentumunun h’ nin 2p’ ye bölümünün tam katları şeklinde olması gerektiğini söyleyerek çözdü. Böylece bir yörüngede dolanan elektron ışıma yapmayacak, ancak dışarıdan atomun kararlılığını bozacak şekilde etkide bulunulursa belirli yörüngelere geçerek iki yörünge enerjisi arasındaki fark kadar enerjili foton salacak veya soğuracaktı. Bu ışımalar görünür bölgede olabileceği gibi morötesi bölgede de oluşabilirdi.

Önceleri; hidrojen ve helyum gibi basit atomlara uygulanan teori çok elektronlu atomlarda bu haliyle iyi sonuç vermedi. Bu sorun da; t="on" ProductID="1923’">1923’ te L. de Broglie’ ın ve t="on" ProductID="1926’">1926’ da E. Schrödinger’ in katkılarıyla ortadan kaldırıldı. İlkin, de Broglie, her atomik parçacığın dalga gibi ele alınabileceğini gösterdi. Bu durumda, elektronlar madde dalgası şeklinde çekirdeğin çevresinde dolanıyordu. Buna dayanarak Schrödinger, atomik hareketin, dalga denklemiyle çözüleceğini gösterdi.

Kuantum teorisinin en önemli özelliğinden biri de, t="on" ProductID="1927’">1927’ de Alman fizikçi W. Heissenberg tarafından ortaya konuldu. Ona göre; hiçbir zaman bir atomik parçacığın, konumuyla hızının ayni anda, ayni kesinlikle bilinmesi imkansızdır. Bu ilkeye, belirsizlik ilkesi denir. Bir elektronun çekirdek çevresindeki bir yerde bulunup bulunamayacağı olasılıklarla belirlenir. Kuantum fiziğinde, kesin yargılara yer yoktur.

Mikro dünyada belirsizliğin olması; h, Planck sabitinin çok küçük mertebelerde (~ 10(-34)) olmasından kaynaklanır. Klasik mekanikle tanımlı günümüz makro dünyasında bizler zaten bu mertebeye göre deneylerde büyük hatalar yapıyoruz. Ancak önemli olan, bu hataların büyük kütlelere sahip cisimlerde ölçülemeyecek kadar küçük değişikliklere neden olmasıdır. Bu durumda belirsizlik ilkesinin; makro düzeyde, kuantumda ele alındığı gibi etkin olamayacağını söyleriz.

Kuantum teorisi XX. y.y ’ a, günümüzdeki gelişimini de göz önüne alırsak pek çok vazgeçilmez yenilikler kazandırmıştır. Bilgisayar, lazer, elektron mikroskobu ve transistör bu yeniliklerin teknolojiye yansımasıdır. Ayrıca; atom ve çekirdeğin yapısı, elektriğin madde içinde iletimi ve katıların ısısal özelikleri gibi konulara doyurucu açıklamalar getirmiştir. >>




5) RÖLATİVİTE ( GÖRELİLİK ) >>
Kuantum kuramıyla atomun yapısı aydınlatılmaya çalışılırken, t="on" ProductID="1905’">1905’ te yeni bir teori ortaya atıldı. I. Newton tarafından kurulan klasik fiziğin mikro boyutlarda yetersizliği anlaşılmıştı. Bunun yanında, cisimlerin ışık hızı mertebesindeki hareketinde de Newton fiziği bekleneni veremedi. Newton, hareketin evrende mutlak olduğunu; bulunulan yere ve zamana göre değişmediğini kabul ediyordu. Ancak, A. Einstein bunun mümkün olamayacağını; bir cismin uzaydaki durumuna göre zaman ve mekan özelliklerinin değişkenlik göstereceğini öne sürdü. Teori, farklı zamanlarda; Özel görecelik ve Genel görecelik adı altında oluşturulmuştur.

* Özel Görecelik: >>
Özel görecelik teorisi, 1887 yılında A. Michelson ve E. Morley tarafından gerçekleştirilen bir deneyin sonucunun yorumlanmasıyla elde edilmiştir. Deney; temelde uzay boşluğunu doldurduğu düşünülen ve J. C. Maxwell’ in, elektromanyetik dalgaların içinde hareket ettiğini öne sürdüğü esir maddesinin varolup olmadığını sınamak üzere gerçekleştirildi. Deneyde; Dünya’ nın, Güneş çevresinde döndüğü yöne gönderilen bir ışık dalgası ile bu yöne dik gönderilen ışık dalgası arasındaki faz kaymasının gözlenmesi esas alınıyordu. Herhangi bir kaymanın bulunması durumunda esirin haretinden dolayı ışık dalgalarının hızının azaldığı sonucuna varılacaktı. Fakat deney bekleneni vermemişti. Yüzlerce deneme sonunda, ışık hızının her zaman, her yerde sabit olduğu sonucuna varıldı.

A. Einstein, bu sonuçları anlamlandıran ve doğru olarak açıklayan ilk kişi oldu. Aslında asırlar önce Türk- İslam filozofu Kindi; zaman, mekan ve hareketin göreli; her cisme ve gözlemciye göre değişen yapıda olduğunu vurgulamıştı. Einstein bu düşüncelere deneysel kanıtları da katarak şu ilkeleri ortaya koydu:

* Tüm fizik yasaları, birbirine göre değişmeyen harekete sahip bütün eylemsiz gözlem çerçevelerinde ayni yazılmalıdır.

* Işığın boşluktaki hızı, kaynak ile gözlemci arasındaki göreli hareketten bağımsız olup daima sabittir.

Bu ilkeler; ışık dalgalarının hareketi için herhangi bir ortamın gerekmediğini, dolayısıyla esirin varlığına ilişkin bir varsayımın gereksiz olduğunu ortaya koydu. Böylece yüksek hızlardaki hareket ele alınırken bir tek referans noktası göz önüne alınacaktır. O da evrendeki tek sabit olan ışık hızıdır. Çünkü zaman, uzunluk ve kütle bu niceliğe göre değişmektedir. Sonuç olarak; göreli bir evrende;

1) Işık hızına yakın hareket eden nesnelerin hareket yönündeki boyları kısalır ve kütleleri artar. Işık hızına, bir cismin ulaşması durumunda ise, bu cismin kütlesi sonsuz, uzunluğu da sıfır olur. Bu sonuçtan hareketle şu söylenebilir: Hiçbir cisim ışık ışık hızına ulaştırılamaz.

2) Işık hızına yakın bir hızla hareket eden sistemde zaman yavaş işler. Tam ışık hızına sahip bir cisim için ise zaman geçmez. Hareketli sistemdeki saat, duran saate göre;

>>

>>
3) Maddenin, hızlandırıldıkça kütlesinin artması; kütle ile enerji arasında yeni bir bağıntının doğmasına yol açmıştır.

>>

E=mc2 >>
İle verilen denklem, maddenin enerjiyle eşdeğer olduğunu ve çok küçük bir kütleden fazlasıyla enerji elde edilebileceğini göstermiştir. Atom bombalarının yapımı ve nükleer reaktörlerin çalışması bu sayede açıklanabilir.

* Genel Görelilik: >>
Özel görelilik, birbirine göre ivmesiz bulunan sistemler için geçerlidir. Ancak evrende ivmesiz hareket eden pek az şey vardır. Bu yüzden, A. Einstein daha genel bir teori olarak genel göreliliği t="on" ProductID="1916’">1916’ da oluşturmuştur. Bu yaklaşımda da Einstein, klasik fizikte Newton tarafından kurulan yerçekimi ifadesinin yetersizliğine dikkat çekmiştir.

Fiziksel olarak, bir cismin uzayda ivmelenmesiyle onun üzerine bir yerçekimi ivmesinin etki etmesi birbirinden ayırdedilemez durumdur. Einstein; bu durumda, “eğer bunları birbirinden ayıramıyorsak o halde bu etkiler birbirinin ayni olmalıdır” şeklinde düşünerek bir cismin eylemsizlik kütlesiyle yerçekimi kütlesinin birbirine eşit olduğunu öne sürmüştür. Bu durumda genel göreliliğin ilkelerini şöyle belirlemiştir:

1- Fizik yasaları, eylemsiz yada ivmeli bir gözlem çerçevesinde aynidir.

2- Sabit bir yerçekimi alanında eylemsiz referanz çerçevesi ile ivmeli bir referans çerçevesini birbirinden ayırmak imkansızdır.

Einstein, bu ilkelerden hareketle, evrenin uzay - zaman boyutunun her ikisiyle incelenmesi gerektiğini belirtmiştir. Böyle bir evren, Öklit geometrisinden uzak olup ancak Riemann geometrisiyle açıklanabilir. Uzay, içine boylu boyunca gerilmiş ağ gibi bir yapıya sahiptir ve Güneş gibi büyük kütleli cisimler bu ağda eğrilikler meydana getirir. İşte gezegenler de, bu eğriliğin etkisiyle yıldızların çevresinde dolanırlar. Bu eğri alan yalnızca fiziksel bir çukur olmaktan uzak olup eğriliğin miktarı arttıkça oradaki zamanın da daha yavaş işlemesine neden olur. Hatta bu eğrilikler ışığı da bükecek niteliktedir. Güneşin yakınından geçecek şekilde, çok uzak yıldızlardan gelen ışınların Güneşimiz tarafından eğriltildiği gözlenmiştir. Yine, Merkür gezegeninin günberi noktasının değişkenlik göstermesi ancak bu kuramla açıklanabilmiştir.

Kaynak:Alıntı
Edited by: fizikbilim

Tanrı,Zar Atmaz[url=\"http://www.fizikbilim.com\"]www.fizikbilim.com[/url]
Web Sayfasını Ziyeret Edin Tüm Mesajlarını Bul
Alıntı Yaparak Cevapla
|
Cevapla 


Benzeyen Konular
Konu: Yazar Cevaplar: Gösterim: Son Mesaj
  Bilimlerin Tarihi Gelişimi..(Fizik tarihi.. ) ogretiyorum 1 947 09-03-2010 02:40 AM
Son Mesaj: ogretiyorum
  Fizigin Metodolojisi ogretiyorum 1 498 09-03-2010 02:31 AM
Son Mesaj: ogretiyorum
  NÜkleer FİzİĞİn Uygulamalari ogretiyorum 1 544 09-03-2010 02:24 AM
Son Mesaj: ogretiyorum
  Atom Modellerinin Tarihi Gelişimi ogretiyorum 1 589 09-03-2010 02:13 AM
Son Mesaj: ogretiyorum
  Fiziğin Tarihçesi ogretiyorum 1 555 09-03-2010 02:06 AM
Son Mesaj: ogretiyorum

Forum'a Git:


Konuyu görüntüleyenler: 1 Misafir