Cevapla 
 
Değerlendir:
  • 0 Oy - 0 Yüzde
  • 1
  • 2
  • 3
  • 4
  • 5
Fiziğin Gelişimi-1
Mesaj: #1
Fiziğin Gelişimi >>
Fiziğin diğer bilim dalları arasında bir liderliği yol göstericiliği vardır. Çünkü evrendeki süreçler fizik yasalarına göre işlemektedir.Bu sebeple fizikteki her önemli gelişme diğer bilim dallarını etkilemiştir.Sadece bununlada kalmamış modern fizik filozofi bilimsel yöntemide hayretle içinde bırakan yeni paradikmalara sebep olmuştur. Fizik tarihi aynı zamanda fiziğin alt bilim dallarının birbirini takip eden tarihidir.Bu sebeple daha iyi anlaşılması için ayrı ayrı bahsedeceğiz. >>
http://www.fiziksemineri.com/fizik/fiztar.html#1#1]1) Mekanik

http://www.fiziksemineri.com/fizik/fiztar.html#2#2]2) Termodinamik

http://www.fiziksemineri.com/fizik/fiztar.html#3#3]3) Elektrik ve Elektromanyetizma

http://www.fiziksemineri.com/fizik/fiztar.html#4#4]4) Kuantum

http://www.fiziksemineri.com/fizik/fiztar.html#5#5]5) Rölativite >>

Şimdi, tarihsel gelişim çerçevesinde bu teorileri inceleyelim.

1) MEKANİK >>
Mekaniğin doğuşu aynı zamanda fizik biliminin başlangıcı olmuştur.XVII. yy.'ın başında bilimsel yöntemin, yani önermelerin doğruluğunun deneysel olarak sınanması yolunun ortaya çıkması ve buna bağlı olarak fizik, kimya ve biyoloji gibi temel bilimlerin felsefeden bütünüyle ayrılmasına sebep olmuştur.

Fiziğin ve mekaniğin temllerini atan Galilei ve Newton'un yapmış olduğu araştırmalar ve kurmuş olduğu kuramlar sonucunda bilimde çok büyük bir atılım gerçekleştirilmiş ve bilim, diğer düşünsel etkinlikleri yönlendiren bir düşünsel etkinlik konumuna yükselmiştir. Bu nedenle bu çağ, bilim tarihçileri tarafından Bilimsel Devrimler Çağı olarak adlandırılmıştır.

Galilei, araştırmalarına ilk başladığı yıllarda gerçekleştirdiği deneylerin sonuçlarını yeniden değerlendirdi ve mekaniğin temel ilkeleri üzerine sonradan geliştirdiği görüşlere yer verdi. Teleskoptan yararlanarak gerçekleştirdiği son buluşu Ay'ın günlük ve aylık sallantılarını (librasyon) ilk kez gözlemlemesiydi. Bu gözlemleri 1637'de görme görme yetisini yitirmeden birkaç ay önce yapan Galilei, daha sonra sarkacın saat mekanizmalarının çalışmasını düzenlemekte kullanılabileceğini belirledi. Bu buluş 1656'da Felemenkli bilim adamı Christiaan Huygens tarafından uygulamaya kondu.

Kepler, Galilei, Huygens ve Hooke'un çalışmalarından yararlanan Newton, Principia mathematica philosophiae naturalis (1687) adlı yapıtıyla dinamiği kurdu. Eylemsizlik İlkesi'nin formüle edilmesi ile birlikte klasik mekaniğin doğal yer, ivme ve kütle gibi temel kavramları matematiksel bir biçimde yeniden ifade edilmiş ve durağanlık, hareket gibi, hareket de durağanlık gibi doğal bir olgu niteliğine kavuşturulmuş ve bu bağlamda hareket bir problem olmaktan çıkarılmıştır. Newton, Eylemsizlik İlkesi'nin doğal bir hareket olarak kabul edilmesi sonucunda döngüsel hareketin açıklanmasının gerekliliğini vurgulayarak, kinematiksel yaklaşımın yerine dinamiksel yaklaşımla göksel cisimlerin döngüsel hareketlerini çekim kavramı çerçevesinde çözüme kavuşturmuştur.

XVIII. yy.'da çok sayıda bilim adamı, özellikle Euler, d'Alembert, Lagrange, Laplace akışkanlar mekaniğini oluşturarak, dinamiğin uygulamalarını geliştirdi. Hidrostatiğin yasalarını ise XVII. yy.'da Stevin ve Pascal kesinleştirmişti.
>>



2) TERMODİNAMİK >>
Termodinamik, ısının tanımını ve madde içindeki hareketi ile iletimini konu alan bir fizik dalıdır. Bu dal tümüyle XIX. y.y bilginlerince oluşturulmuştur. Bu yüzyıldan önce ısının yayılımı, sıcaklıkla ilişkisi gibi birtakım konularda incelemeler yapılmıştı. Bir İskoçyalı olan J. Black ilk defa, maddeler için belirleyici bir özellik olan ve onun belli sıcaklıkta enerji tutabilmesi yeteneğini ortaya koyan özısı kavramını tanımlamıştır. Bu, ayni zamanda ısı ile sıcaklık arasındaki farkın tanımını gündeme getirmişti. t="on" ProductID="1798’">1798’ in başlarında ısının, hareketin bir formu olduğu tezi B. Thompson tarafından gösterilir. Devrinin sayılan siyasi ve bilimsel kişiliği olan Thompson, bir savaş sırasında topun içine yerleştirilen bir mekanizmayla sürtünme enerjisinden yararlanarak su ısıtma işlemini ve buharlaşmayı gerçekleştirdi. Bir İngiliz fizikçisi olan J. P. Joule, ısıyı enerjinin korunumu ilkesinden yararlanarak tanımladı. Onun bu çalışmasıyla, gazların hareketinin tanımlandığı kinetik teori ile beraber ısının da bir enerji çeşidi olduğu fikri resmen kabul edildi. Bu çalışmalarının çoğunu 1840 ile 1850 yılları arasına sığdıran Joule, mekanik düzeneklerle gerçekleştirdiği sayısız deneyler sonunda termodinamiğin birinci kanununu elde etti: “ Bir sistem ısı kazanır yada kaybederse ayni oranda mekanik iş ya sistem üzerine veya sistem tarafından yapılır.”

Isının tanımı üzerine bu çalışmalar devam ederken, t="on" ProductID="1824’">1824’ te Fransız bir mühendis olan S. Carnot ideal bir makine düşünerek, iki farklı ısı kaynağı arasında çalışan ısı makinesinin veriminin, aynı kaynaklar arasında çalışan Carnot makinesinin veriminden daha büyük olamayacağını söylemiştir. Termodinamiğin diğer bir gelişimi ise mutlak sıcaklık ölçeğinin, Lord Kelvin tarafından tanımlanmasıdır. W. Kelvin’ e göre; soğuk cisimden sıcak cisme kendiliğinden bir ısı akışı olamaz. Bu görüş ayni zamanda termodinamiğin ikinci yasasını oluşturur. Yine bu yasaya göre, çok önemli bir kavram olan entropi kavramı ortaya atıldı. Kısaca açıklamak gerekirse bu kavram; evrendeki yalıtılmış sistemlerin düzensizliğe doğru meyletmesinin bir ölçüsüdür ve evrenin düzensizliği her an artmaktadır. O halde, bütün doğa olaylarında evrenin entropisi artmaktadır.

1906’ da termodinamikte önemli gelişmeler yaşandı. Bu gelişmeler artan teknolojiyle beraber düşük sıcaklık altındaki maddelerin dinamiği hakkında meydana geldi. W. Nerst, mutlak sıfır sıcaklığına hiçbir zaman inilemeyeceğini belirtirken maddenin en düzenli halinin mutlak sıcaklıkta (- t="on" ProductID="273ᄚC">273°C ) bulunabileceğini söyler. Bu açıklama da termodinamiğin üçüncü yasasını oluşturur. >>




3) ELEKTRİK ve ELEKTROMANYETİZMA >>
Elektriğin, Thales’den daha önce insanlar tarafından bilindiği bir gerçektir. Bunu, şu üç nedene dayandırabiliriz:

Bir kumaş parçasına sürülen kehribarın saman veya hafif cisimleri çekmesi

Şimşek çakması

Elektrikli torpido balığının varlığı

Yukarıdaki olayların arasındaki ilişki ilk kez, W. Gilbert tarafından XVI. y.y ’da ortaya konuldu. O, metalik olmayan maddelerin, birbirini elektriksel çekme özelliği gösterenlerini listelemiş ve bu maddelere elektrikli ve yüklü nitelemesinde bulunmuştur. Gilbert, pek çok kez bu cisimlerin birbirlerini ittiğini deneysel olarak görmesine rağmen, itme olayını açıklayamadığı için bu etkileşimi görmezlikten gelmiştir. Ondan sonra gelen deneyciler, bu itme kuvvetini deneysel olarak incelemiştir. Bunların başında Magdeberg Yarımküreleri deneyiyle Otto von Guericke gelir. Bu deney, bir eksene geçirilmiş kükürtten topun çevrilmesiyle beraber buna dokunulması halinde elektrik kıvılcımlarının çıktığını gösterir. Statik elektriğin elde edilmesi bu deneyle gösterilmiştir.

XVIII. y.y ’ ın başlarında İngiliz deneyci S. Gray ; t="on" ProductID="650 ft">650 ft. (~200 m.)’ den uzun olan nemli bir ip boyunca elektrik yükünün iletimini gerçekleştirdi. Ayrıca elektriksel çekme kuvvetinin metal bir nesneden diğer bir cisme aktarılabileceğini gösterdi. Hemen hemen ayni zamanda; Fransız C. Dufay, yalnızca iki tür elektriklenmenin olabileceğini ortaya koydu. Buna göre; farklı yükler birbirini çekerken ayni yükler birbirini iterdi. Bu, ayni zamanda kapsamlı ilk elektrik teorisiydi. Dufay’ ın teorisini geliştiren B. Franklin, farklı iki elektrik türüne pozitif ve negatif adlarını verir. Elektriğin akıcı nitelikte olduğunu öne süren Franklin; teorisinde, yük hareketinin yönünün pozitiften negatife doğru olduğunu ve bu hareketin, pozitif yüklerin yer değiştirmesiyle meydana geldiğini ortaya koyar. Bu teoriler oluşturulurken bir yandan da pil yapımı ve elektriğin depolanması ile ilgili çalışmalar ilerler. Leyden şişesinin yapılmasıyla ilk kez elektrik depo edilirken bir İtalyan tıpçı olan L. Galvani t="on" ProductID="1786’">1786’ da değişik metaller kullanarak kurbağanın iç organlarının incelenmesi sırasında; kurbağanın bacak kaslarının kasıldığını gözlemler. Galvani’ nin sonuçlarını duyan A. Volta, birkaç yıl sonra bu olayın iki farklı metalden kaynaklandığı sonucuna ulaşır. Yaptığı deneylerde iki adet çeşitli cinste metal alarak bunların arasına değişik sıvılar koyar. Elde ettiği sonuçlardan hareketle 1800 yılında elektrik pilini icat eder. Öte yandan A. Coulomb, kendi buluşu olan burulma terazisi‘ ni kullanarak yüklü cisimler arasındaki elektrik kuvvetlerini nicel olarak ölçer. Sonuçta, elektriksel kuvvetin bir ters kare kuvvet olduğunu bulur.Bu iki elektirksel yük arasındaki elektriksel kuvveti Coulomb Kuvvet'i olarak adlandırılır.

Elektrik ve manyetizma arasındaki ilişki Danimarkalı bilim adamı H. Oersted’ in, bir gösteri deneyi sırasında üzerinden elektrik akımı geçen telin, yakınındaki pusulayı saptırdığını bulmasıyla t="on" ProductID="1819’">1819’ da açığa çıktı. Bundan birkaç yıl sonra Alman fizikçi G. S. Ohm, bir tele uygulanan gerilim ile o telden geçen akım arasında bir bağıntı olduğunu bulur. Gerilimin telden geçen akıma oranına o telin direnci adını verir. Bu arada Oersted’ in gözlemlediği elektromanyetik olay; J. B. Biot, F. Savart ve A. M. Ampére tarafından matematiksel olarak ifade edilir. Yine ayni yıllarda M. Faraday ve J. Henry, elektrik akımı ile manyetizma arasındaki başka ilişkileri gösterdiler. Bir devrenin yakınında bulunan bir mıknatısı hareket ettirerek yada başka bir devredeki akımı değiştirerek o devrede elektrik akımı oluşturdular. Bu çalışmalar, ilk elektrik motorunun yapımıyla sonuçlandı. Yine, Faraday manyetik alanın varlığını mıknatıs etrafında toplanan demir tozlarının şekillenimi yardımıyla ispatladı. Ancak elektrik ile manyetizma arasındaki nihai ilişki en açık dille J. C. Maxwell tarafından t="on" ProductID="1873’">1873’ te gösterilir. Maxwell’ in ortaya attığı denklemler, ışığın yapısını ve boşluktaki yayılımını açıklarken, ayni zamanda havada elektromanyetik dalgaların nasıl bir yerden bir yere aktarılabileceğini de ortaya koyuyordu. Nitekim; R. Hertz t="on" ProductID="1888’">1888’ de elektromanyetik dalgaları laboratuarda oluşturarak Maxwell’ in öngörülerini doğruladı. Basit bir verici devresinde oluşturulan elektrik kıvılcımları, aralarında hiçbir bağlantı olmadan alıcı devrede elde edildi. Çok geçmeden, 1890 yılında Markoni, ilk radyoyu yapar ve Hertz’ in bu buluşunun haberleşmedeki önemi gösterilmiş olur. Bugün günlük yaşantımızdan uzay çalışmalarına kadar pek çok alanda buluş kullanılmaktadır.
Kaynak:Alıntı
>>Edited by: fizikbilim

Tanrı,Zar Atmaz[url=\"http://www.fizikbilim.com\"]www.fizikbilim.com[/url]
Web Sayfasını Ziyeret Edin Tüm Mesajlarını Bul
Alıntı Yaparak Cevapla
|
Cevapla 


Benzeyen Konular
Konu: Yazar Cevaplar: Gösterim: Son Mesaj
  Bilimlerin Tarihi Gelişimi..(Fizik tarihi.. ) ogretiyorum 1 947 09-03-2010 02:40 AM
Son Mesaj: ogretiyorum
  Fizigin Metodolojisi ogretiyorum 1 500 09-03-2010 02:31 AM
Son Mesaj: ogretiyorum
  NÜkleer FİzİĞİn Uygulamalari ogretiyorum 1 545 09-03-2010 02:24 AM
Son Mesaj: ogretiyorum
  Atom Modellerinin Tarihi Gelişimi ogretiyorum 1 589 09-03-2010 02:13 AM
Son Mesaj: ogretiyorum
  Fiziğin Tarihçesi ogretiyorum 1 555 09-03-2010 02:06 AM
Son Mesaj: ogretiyorum

Forum'a Git:


Konuyu görüntüleyenler: 1 Misafir